Molecular evolution of minisatellites in hemiascomycetous yeasts.

نویسندگان

  • Guy-Franck Richard
  • Bernard Dujon
چکیده

Minisatellites are DNA tandem repeats exhibiting size polymorphism among individuals of a population. This polymorphism is generated by two different mechanisms, both in human and yeast cells, "replication slippage" during S-phase DNA synthesis and "repair slippage" associated to meiotic gene conversion. The Saccharomyces cerevisiae genome contains numerous natural minisatellites. They are located on all chromosomes without any obvious distribution bias. Minisatellites found in protein-coding genes have longer repeat units and on the average more repeat units than minisatellites in noncoding regions. They show an excess of cytosines on the coding strand, as compared to guanines (negative GC skew). They are always multiples of three, encode serine- and threonine-rich amino acid repeats, and are found preferably within genes encoding cell wall proteins, suggesting that they are positively selected in this particular class of genes. Genome-wide, there is no statistically significant association between minisatellites and meiotic recombination hot spots. In addition, minisatellites that are located in the vicinity of a meiotic hot spot are not more polymorphic than minisatellites located far from any hot spot. This suggests that minisatellites, in S. cerevisiae, evolve probably by strand slippage during replication or mitotic recombination. Finally, evolution of minisatellites among hemiascomycetous yeasts shows that even though many minisatellite-containing genes are conserved, most of the time the minisatellite itself is not conserved. The diversity of minisatellite sequences found in orthologous genes of different species suggests that minisatellites are differentially acquired and lost during evolution of hemiascomycetous yeasts at a pace faster than the genes containing them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Génolevures: comparative genomics and molecular evolution of hemiascomycetous yeasts

The Génolevures online database (http://cbi.labri.fr/Genolevures/) provides data and tools to facilitate comparative genomic studies on hemiascomycetous yeasts. Now, four complete genome sequences recently determined (Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii, Yarrowia lipolytica) have been added to the partial sequences of 13 species previously analysed by a random approach...

متن کامل

Hemiascomycetous yeasts at the forefront of comparative genomics.

With more than a dozen species fully sequenced, as many as this partially sequenced, and more in development, yeasts are now used to explore the frontlines of comparative genomics of eukaryotes. Innovative procedures have been developed to compare and annotate genomes at various evolutionary distances, to identify short cis-acting regulatory elements, to map duplications, or to align syntenic b...

متن کامل

Comparative genomics of hemiascomycete yeasts: genes involved in DNA replication, repair, and recombination.

Among genes conserved from bacteria to mammals are those involved in replicating and repairing DNA. Following the complete sequencing of four hemiascomycetous yeast species during the course of the Genolevures 2 project, we have studied the conservation of 106 genes involved in replication, repair, and recombination in Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii, and Yarrowia ...

متن کامل

Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns.

As part of the exploratory sequencing program Génolevures, visual scrutinisation and bioinformatic tools were used to detect spliceosomal introns in seven hemiascomycetous yeast species. A total of 153 putative novel introns were identified. Introns are rare in yeast nuclear genes (<5% have an intron), mainly located at the 5' end of ORFs, and not highly conserved in sequence. They all share a ...

متن کامل

Génolevures complete genomes provide data and tools for comparative genomics of hemiascomycetous yeasts

The Génolevures online database (http://cbi.labri.fr/Genolevures/) provides tools and data relative to 4 complete and 10 partial genome sequences determined and manually annotated by the Génolevures Consortium, to facilitate comparative genomic studies of hemiascomycetous yeasts. With their relatively small and compact genomes, yeasts offer a unique opportunity for exploring eukaryotic genome e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 23 1  شماره 

صفحات  -

تاریخ انتشار 2006